264 research outputs found

    The Flower

    Get PDF

    The Betrayal

    Get PDF

    White Dwarf Mergers on Adaptive Meshes I. Methodology and Code Verification

    Full text link
    The Type Ia supernova progenitor problem is one of the most perplexing and exciting problems in astrophysics, requiring detailed numerical modeling to complement observations of these explosions. One possible progenitor that has merited recent theoretical attention is the white dwarf merger scenario, which has the potential to naturally explain many of the observed characteristics of Type Ia supernovae. To date there have been relatively few self-consistent simulations of merging white dwarf systems using mesh-based hydrodynamics. This is the first paper in a series describing simulations of these systems using a hydrodynamics code with adaptive mesh refinement. In this paper we describe our numerical methodology and discuss our implementation in the compressible hydrodynamics code CASTRO, which solves the Euler equations, and the Poisson equation for self-gravity, and couples the gravitational and rotation forces to the hydrodynamics. Standard techniques for coupling gravitation and rotation forces to the hydrodynamics do not adequately conserve the total energy of the system for our problem, but recent advances in the literature allow progress and we discuss our implementation here. We present a set of test problems demonstrating the extent to which our software sufficiently models a system where large amounts of mass are advected on the computational domain over long timescales. Future papers in this series will describe our treatment of the initial conditions of these systems and will examine the early phases of the merger to determine its viability for triggering a thermonuclear detonation.Comment: Accepted for publication in the Astrophysical Journa

    Numerical Models of Binary Neutron Star System Mergers. I.: Numerical Methods and Equilibrium Data for Newtonian Models

    Get PDF
    The numerical modeling of binary neutron star mergers has become a subject of much interest in recent years. While a full and accurate model of this phenomenon would require the evolution of the equations of relativistic hydrodynamics along with the Einstein field equations, a qualitative study of the early stages on inspiral can be accomplished by either Newtonian or post-Newtonian models, which are more tractable. In this paper we offer a comparison of results from both rotating and non-rotating (inertial) frame Newtonian calculations. We find that the rotating frame calculations offer significantly improved accuracy as compared with the inertial frame models. Furthermore, we show that inertial frame models exhibit significant and erroneous angular momentum loss during the simulations that leads to an unphysical inspiral of the two neutron stars. We also examine the dependence of the models on initial conditions by considering initial configurations that consist of spherical neutron stars as well as stars that are in equilibrium and which are tidally distorted. We compare our models those of Rasio & Shapiro (1992,1994a) and New & Tohline (1997). Finally, we investigate the use of the isolated star approximation for the construction of initial data.Comment: 32 pages, 19 gif figures, manuscript with postscript figures available at http://www.astro.sunysb.edu/dswesty/docs/nspap1.p
    • …
    corecore